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A Theme: Physics of Information E

+ The question of the limiting energetics of ICT systems is
open

+ Limiting energy projections for many electronic components
are needed to comprehend system scaling limits, e.g.
Logic, Memory/Storage, Communication, Energy Sources etfc.

*»* Physics for ICT energetics

Energy Source - Avogadro’s Law
Logic and Memory - Boltzmann-Heisenberg relations
Communication -  Einstein relation

Computation — Turing Machine



A Thought System:

Ultimate Connectivity: Internet of Nanothings

1
b
L
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loT Grand Challenges

I. Giga-Nano-Tera (Billions of Nanosystems
connected in a THz-network)

Il. Exa-DataCenters: Semiconductor

Technologies for Big Data

(Radically new energy-efficient technologies
for storing and analyzing massive volumes of
data)

Intel[i ent NanoNodes

Exa-DataCenter




What is Information?

Information is measure of distinguishability
e.g. of a physical subsystem from its environment...

I

I=KInN

Nmin = 2
Information-bearing particles 1 (N min) =1
1=KIn2
~ 0.5 nm/bit
oo 4 4 N K I
DI DK & - = —
» N b L L4
ke . In2

S N A THEME: Minimal ICT Element

What is the smallest volume of matter needed for an ICT
Source: IBM element? What is the smallest energy of operation?




Particle Location is an Indicator of ﬁ
State

1 1 0 0 1 0

O olle O olle




Kroemer’s Lemma of Proven Ignorance

¢ If in discussing a semiconductor problem, you
cannot draw an Energy-Band-Diagram, this shows
that you don’t know what are you talking about

+ If you can draw one, but don’t, then your audience
won'’t know what are you talking about

Herbert Kroemer

“% Nobel Lecture,
! ‘ Dec. 8, 2000
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Central Concept: Energy Barrier
How can a barrier be created and
controlled in a physical system?




‘Energy cell’ — a generic abstraction ﬁ

For electronic ICT-energy technology, the universal principle of
operation is the creation and management of charge separation

a) Charge separation

Galvanic Cell ‘electromotive force’ — e.m.f.
Fuel Cell
Thermoelectric Cell
>—

Photovoltaic Cell

b) Conversion c) Storage

Radioisotope Cell
Supercapacitor O \llm
— +
To prevent charge recombination a barrier is

AAANA needed to keep the opposite charges apart
source of electrical energy @




ﬁ® The Origins of Charge-Based ICT-
Energy elements

Luigi Galvani (1737-1798)

University of Bologna

Discovered the electrical effect of two
dissimilar metals in contact with
electrolyte

P %)
n i o
It U
| g = .
i ’ - y Z

Ao Y Inspired by Galvani, Alessandro Volta built the first béttéry



ﬁ® Scaling limits of micro-batteries

Reale Collegio di Vercelli ~1Volt ||j — Lit +e
: V
/n — Zn?t+2e

The galvanic cell consumes
atomic fuel to produce electricity

electron flow

g~ 1leV/atom (~chemical bonding energy)

E = £ N Number of atoms in

cathode electrode

anode cathode

The energy output is limited by the Avogadro’s number, N,

AT

E_.~eN, 1V=16x10""-6-10" ~10° !
mole cm

E~(10"%cm)’-10* ~107°J




Information Processing Technology

Desirata

Designers and Users want:

+ Highest possible integration density (n)
To keep size small
To increase functionality

+ Highest possible speed (f=1/)
Speed sells!

+ Lowest possible power consumption (P)
Decrease demands for energy

nerg

Communjcation

Logic

Sensil

IR

g

The generation of too much heat means costly cooling systems

External stimuli

NZSIERR RN



Lowest Barrier: E
The Boltzmann constraint

Distinguishability D implies low / «
probability IT of spontaneous transitions ®
between two wells (error probability)
D=max, I1=0 D=0, T1=0.5 (50%) Ey‘% \'
Classic distinguishability: £,
assic distinguishability: Hclassic = exp(— ﬁ)
. B

Minimum distinguishable barrier: II=0.5 ©
Thermal
1 E Noise

— =exp(——= E,=kTI
7 =P ) > E;=kTin

Shannon - von Neumann - Landauer limit
12



Scaling Limits: The Heisenberg Constraint ﬁ

At this size,
tunneling will
destroy the state

Minimal time of dynamical
evolution of a physical
system

N. Margolus and L. B.
Levitin, Physica D 120
(1998) 188

13




Quantum Mechanical Tunneling E
— A= 2mE,~Axzaq}—m

P E, / h h
Apr = | = a\/ZmEb < —
2
o acrit =
< > At this size, tunneling 2mEb
AX will destroy the state

> ()

1—2\? (GE)ZO l—xze">exp(—2\/§7m(a\/g)

Wentzel-Kramers-Brillouin
(WKB) approximation



Example: Quantum Resistance E

Heisenberg’s Energy-time relation

AEAtzﬁ

2

Plank’s constant
h=6.62x10-34 Js

h
2AE

At =

Minimal time of dynamical evolution of
a physical system

N. Margolus and L. B. Levitin, Physica
D 120 (1998) 188




Quantum Resistance E

Single —electron Conductance channel (mode)

—_0 ~
Local Event -
A no coordinate ~AE
L — 0 change '
AE=Ae R
R_? e 5
AV =IR R AEAC b
AV = ﬁ > e’ 2e’
34 7.
e _ 6.64x10 _1{ 52 _12.9%0
e 2x(1.6x107°C)



Summary on Quantum resistance E

von Klifzing constant

Heisenberg’s Energy-time relation

h Ohm’s Law: R() = 5 = 12.9kC2

V=IR e

2
2 G, = 1 =2€
R, h

It was experimentally discovered in the
1980s in Quantum Hall Experiments

_________________________

Landauer formula



Summarizing, what we have learned E
so far from fundamental physics

1) Minimum ener er binary transition
) gyp Iy Emm—k T1n?2

Boltzmann

—

bit

3x10-21 ]
2) Minimum distance between two distinguishable states
h —— > h
AxAp = min = @ = ~1nm
P 2 | Heisenberg 2\ 2mkT In 2
3) Minimum state switching time
E—n h _

AEAt = ﬁ - t, = ~107" s

= 9 Heisenberg W T 1n?
4) Maximum 2D gate density: - 1 ~ 10" device

xilin cm ’

18



Total Power Dissipation E
(@E, .= kTIn(2))

21
P _n°Ebl-t_1014 ) .3°10 [J]
chip — _ [Cm ] ~13
t 107"s]

-21
E.=kTIn2=3-1007J o
bit B O

WS e

\

o0l
0(\16
a \]‘39
'\\NO\)\
(o Limits of Cooling?
Cooling method W/cm?
Free convection, air 0.25
Free convection, water 1
Forced convection, air 5
Sun Forced convection, water 150 19




L

-— Herror = eXp(_b)

k,T

“Boltzman constraint” on

minimum switching energy

E™ =k,Tn2

P11 o
C oLL

AxAp =

Nanoscale Devices

“Heisenberg constraint”
on minimum device size

~1021)

O

‘1,

-'0. _»:
‘O,

This structure cannot be used for
representation/processing information

>

~Inm

O

‘1,

h
X . = -
" 2 2mkT In?2
“’min
Eb
‘O,

An energy barrier is needed to
preserve a binary state



Barriers in electronic ICT: A Summary

1. Metal-Insulator-Metal stack

(==
-
n
=
Q)
o
Me = Me
—

Me

wnndep

Me

Flash memory

The height of these barriers

cannot be changed

By doping, it is possible to create a built-in
field and energy barriers within
semiconductor

acceptor ions

2. pn-junction -
Si pIr] /(eg B)

donor ions
(e.qg. P)

Transistor

-

The height of these
barriers can be changed




Energy dissipation in binary
transitions: Example | Vacuum Tubes

Metal Vacuum Metal

uolnedissip

22



Ideal rectangular barrier (abrupt walls)

V=0
E.o d=a
Voo 4
P a .

23



Ideal rectangular barrier (abrupt walls)

Eb —
Vo dt ___________________________ >
- a .

— eV

eV<E,,
E,=E

d=a

24



Ideal rectangular barrier (abrupt walls)

eV=E,
E,=E.

d=a

25



Ideal rectangular barrier (abrupt walls)

eV>E,
E,=E

d<a

26



Barriers in electronic ICT: A Summary

1. Metal-Insulator-Metal stack

(==
-
n
=
Q)
o
Me = Me
—

Me

wnndep

Me

Flash memory

The height of these barriers

cannot be changed

By doping, it is possible to create a built-in
field and energy barriers within
semiconductor

acceptor ions

2. pn-junction -
Si pIr] /(eg B)

donor ions
(e.qg. P)

Transistor

-

The height of these
barriers can be changed




Barrier height control in a semiconductor system

Gate E,=E, —kBT(ln ]]szli +In x‘j)
d

a

e

iz

© 6

® ®
n @ﬂ@ n

28



Barrier height control in a semiconductor system

0s N, N
Gate EbO=Eg—kBT(ln “ +In f)
P G No N
[ )
___________ Q__BQ‘__________ Ey,=E,,-eV,

29



Fundamental operation of multi- E
electron binary switch:

k,T
a A B
E, +eAV , 5 5
Ny =N,exp| - 0000 0000
k,T
IAB
E,=E, —eV, (~ /B%ﬁ
b A E, eV,g
0000 . B
eV,g
Q000
- _ By By +eVp) k. 1— eV
B e e P Y B
E —eV Yy
—e eV 0000—»
[ =eN,exp| - — £ |1 -exp| - —28 B
k,T k,T <0000

30



FET Equation 33C

3
E, )
— - eV =E,
L4 =1,exp - g_@ 1—exp iz £ ;
k,T kT % [
AV {
dec(Al) | 3 10 times increase 0
0 0,2 0,4 0,6 0,8 1

source-drain voltage, V (Volts)

Eb
[,exp|——
I, k,T E -FE, AE,
= =exp| - — - | =exp| - =10
| E, k,T kT b
Iyexp|——2 2=
k,T I,
S=kBT1n10=6OmV S=kBTln2
e dec e




Barrier Height Control in Charge Transport E
Devices Em)> Conditional Change of State

Poisson’s equation:

0O Changes in the barrier height require

2
Vig= _g_ changes in charge density/distribution
0

Operation of ALL charge transport
A q devices includes charging/discharging
capacitances to change barrier height
controlling charge transport

+ FET
+ SRAM, DRAM, flash q
+ RTD, SET...

Energy to “deform” the barrier is equivalent to the
energy of charging the control (gate) capacitor 2




Energy dissipated E
by charging of a capacitor

_______ = STORED
E | —— r ' V=const c  ENERGY
DISSIPATED | \/ - CV?
ENERGY | + | Lo = 5
l_ _ _
cr?
Edis = 2
00 2 o0 t 2 2 o 2t 2 [o'e) 2
H 1% L = cv
Er=fl/r()=—f Ve "€ a’t=V—fe’”Cdt=V -rcfe"’dz’=
) r re roe roo 24 2

By charging a capacitor to the energy E=CV?/2 from a
constant voltage power supply, an equal amount of energy
(CV?/2) is also dissipated

33



Energy dissipated E
by discharging of a capacitor

Before: E, . is the sum of energy stored in two
N capacitors) before closing the switch

; 2
\ —C — C E CV
: charged uncharged before _ 2
P C"=2C
er .. * * * *
(") g =q=ClV=CV =2CV
.V
1c Lc V=3
charged charged
2
. o #) 2C K 2
E .., is the sum of energy stored _Ccre 2) CV™  Eyy.
in two capacitors) after closing afer — 5 ) 4 9

the switch 34



CMOS scaling on track to obtain physical
limits for electron devices

.
100 ; 3 100
: ; 10 |
10 1 TF
Gate i Switching 01}
Delay 1 1 Energy 0.01 }
(ps) 1 ()
: 0.001
0.1 r 0.0001
olzmann-Heisenberg Limit DAL Fel 1L ]
sl 0.000001
Prof. Mark Lundstrom/Purdue : 0.001 001 0.1 1
LGATE (Mm) ==
Why do we still )
operate so far Answer: /

above the

Why 104 kg TIn2
and not kzTIn27?

fundamental limit;

1) System reliability costs
2) Communication costs
3) Fan-Out costs

/

7'

I

35



ﬁ@ System Level Energetics I.:
Reliable Switching

Computation at I1,,=0.5, and hence at E,=kgzTIn2 is impossible

In useful computation, I1,,, <<0.5, hence barrier height larger than

kgIn2 is needed (larger total power consumption)

Question: How Much Larger?

H . (1 H )N The probability that all N switches in a
syst err

/ circuit work correctly

Nt —>L| -, .| —Ef

(Heisenberg)

(Boltzmann&Heisenberg)

36




ﬁ® System Constraint on Minimum Energy per

Bit

M = (1 11 )N The probability that all N switches
err

Syst

I1 > 11

Syst crit

1
M, =1-11"

crit

e.g.,

0.5

\0_99 a ‘reasonable” boundary

In a circuit work correctly

lower boundary

Eb. =f(N)
>

Herr - f(Eb)

Boltzmann

N o~

max 2

a

Heisenberg

E
I1 _ =lexp(——2)Hexp(-
o =(@XP(= ) HEXD(

2\2m
7

hE, +2akT.|2mE
ay E, ) —exp(-— hkT\/ >)
37




ﬁ Uniformly Scaled Information Processor

=  The maximum possible number N of binary
switches in a close-packed array is inversely

proportional to the square of the barrier lengtl.

L (e.g. the FET gate length L) |
" N=f(L) <= L=f,(N) L, ~

£ J20N

= the switching time ¢, of an individual switch is

directly proportional to L

=  The minimum barrier height in binary switches

and therefore minimum operating voltage is a

function of

L

<~ Jaon By, =TV
= [, (device level) Prin /)
= N (system level) for =11,

Hsyst = (1 - Herr )N

1

Noox ~———5~ 10" cm™>
(20L,)
IM1.;=0.99
L,, nm N, cm™? E, i
100 2.50E+07 0.65
50 1.00E+08 0.67
30 2. 78 E+08 0.69
20 6.25E+08 0.70
10 2.50E+09 0.71
9 3.09E+09 0.72
8 3.91E+09 0.72
7 5.10E+09 0.73
6 6.94E+09 0.80
5 1.00E+10 1.17
4 1.56E+10 1.90
3 2. 78E+10 352




Generic Challenges

+ Energy — Errors dilemma

3.75
3.5
3.25

3

2.75
25

> 225
QO 2
81.75
15
1.25

1

0.75
0.5
0.25

0

ENN°E =N°€°Vdd:

V.in~0.7V

min

™ iy Il o ™|

PT TS
1 —3
1
A\
[N
~

Tunneling cannot be ignored
for a<5nm, which sets a
practical limit

13 14 15 16 17 18 19 20

= em(—@(a\/?b )

lcmx1cm
N~101% ¢m
!
\
1
\
Y
3

39



ﬁ Switching Energy: Energy of Full-cycle

OFF _1_ ON _1  OFF
.
_o
Lopr_on = £, E__. Eoyn_orr = E,
Ebitmin = 2€bmin T o carrier
N 7 We are fighting
kTIn2 ambient thermal
energy!
ESWmin —_ 3kBTIl2 x N N — the number of electrons

E. =2E,+NE =(N+2)k,TIn2

40



ﬁ® Connecting Binary Switches via Wires:
Extended Well Model

Example: L=4a
N=1—P<0.25 In General:

N — the number of electrons

41



ﬁ®

Connecting Binary Switches via Wires in
2D (L>2na, N electrons)

For logic operation, a binary switch needs to control at
least two other binary switches

A

O
®

Hegp = xIl, =

L
< >
[ ] @
C D
@ @
L>2na | | n- fan =2
N — the number of electrons L=4q
2 :: >
1-(1-2 N
I N = S 0.58

min

0.68




ﬁ@ Minimum switching energy for connected

binary switches

E, =2E,+NE,=(N+2)E,

FO2 FO4
n=2 n=4
L=4q [=8,
N, min=5 N, min=14
E, =7k, TIn2 E_ =16k, TIn2

14

0.51

Communication between logic switches takes more
energy than information processing (switch operations)

15

0.56

16

0.60

17

0.65

18

0.68 }




ﬁ |
|

Operational reliability vs. Number of

Electrons

= In interconnects, the number of electrons needs to be
sufficient to guarantee successful communication

between binary switches

Typical fan out
(n=4) for logic

L=

8a

Operational
N electrons reliability
14 50%
20 75%
42 99%

We need many electrons for reliable communication

44



More electrons means more energy... ﬁ

Mark Lundstrom/Purdue:

Why do we still
operate so far
above the
fundamental limit:
Why 10° kg TIn2
and not kg TIn27?

~

/

We need a significant

number of electrons for
branched communication
between binary switches

ENN°E =N'€'Vdd

E~22-1.6-10""-0.7=2.5-10""°J = 600k,T

MPU

Year | Node gate | N electron E,,/kgT
2003 | 100 45 1215 5.63E+04
2004 90 37 812 3.76E+04
2005 80 32 532 2.26E+04
2006 70 28 439 1.87E+04
2007 65 25 360 1.53E+04
2008 57 22 331 1.28E+04
2009 50 20 280 1.08E+04
2010 45 18 245 9.47E+03
2012 35 14 155 5.39E+03
2013 32 13 134 4.66E+03
2015 25 10 77 2.37E+03
2016 22 9 69 2.12E+03
2018 18 7 40 1.07E+03

22 6.05E+02

45




ﬁ® Long Interconnects

= In interconnects, the number of electrons needs to be
sufficient to guarantee successful communication

between binary switches

n=2| L=100aq

Operational
N electrons reliability
121 50% E~1;0kBT
198 75% | E~v200k,T
487 99% | E~500k,T

°  Actual Data
= Stochastic Model

N =142,742
p=0.8
k=5.0

| 10 100 1000
Interconnect Length, { [gate pitches]



* Communication between an information
processing system and the outside world

a=1

|
y /

L

E_.

~eNk,T

Communication cost per

C~ég,L

L

Joules

Joules

2

gL (k,TY
2 e

100 um

2.86E-19

2.96E-19

1 mm

2.87E-18

2.96E-18

1 cm

2.87E-17

2.96E-17

10 cm

2.87E-16

2.96E-16

Tm

2.87E-15

2.96E-15

bit per unit length:

& kBT2
2\ e

=3x10-15 J/(bit-m)




Wireless Communication for Micro-
Scale Systems

Example: Uniformly radiated wireless communication

E = -E L E =hv=%

com — _ photons ph

= University

8l of Perugia 5
2 y E ~
4 com 3
N ~ A
photons Az
La telegrafia senza filo

~Friis equation

Example: r=1m

A~v1 pm

E~10°J

_I_
6.62-107*-3-10° J ‘
E_=4x-1°- ~107 =—

(4-107°) bit

3
D
=
Q
<




ﬁ® Communication Scaling

Scaling of omni-directional
wireless is limited due to
Increased energy costs

£ Amr? .hc _ A he
com /12 1 /13

10 cm 10 um
1,00E-03 : -
1,00E-05 : Intelligent u-cell
1,00E-07 - Experimental data s
’ A
8 !
1,00E-09 J E:i - i ~10 um cell |
iPhone~ 10 cm :“ 1,00E-11 S )
o 1,00E-13 : o \ : oo
1,00E-15 i /\260&0 . ; 7.
1,00E-17 - ’Ph.one /6\(\g ﬂ&%“ D
100E19 | ;/ — )
1,00E-21 T :
0 1 10 100 1000 10000 100000 N Ewml 107°
6 V, GHz bit ~ -7
A — Etotal — 10 ’ Ebit 10
it -18
E. 10 r=10m ) )
o 0 ~100 transmitted bits

~10%% transmitted bits




ﬁ® New Interconnect paradigm?

The main problem of interconnects is the statistical behavior of
discrete charges — Electrons are free to move along the line

Thermal & Shot Noise — we
need more electrons for reliable
branched communication

Are “deterministic
interconnects” possible?
e.g. Photons transition
point-to point? Others?

Eli Yablonovitch/UC Berkeley

! & .8 SV & \<

-

Can we decrease the
number of information-
bearing particles in
communication between
\binary switches?

)

50



Orientation problem




ﬁ(@

MINIMAL MEMORY ELEMENT

(Nonvolatile case)

V. V. Zhirnov and T. Mikolajick,

MUCEEEEE U Chapter 26: Flash Memories,
Information Technology

in: Nanoelectronics and
Information Technology,
by R. Waser (Ed.) Wiley-VCH 2012.

Ldvanrd Plactraong Mato g

What is the smallest
volume of matter
needed for memory?

HWILEY-VCH



S 2| k,T p”
(=L 10y = Gy V- TT =50 2 o] 20

k,T "\ k,T _° k,T exp(—2 h2m a4\ E,
kT 7 k.T
bmln = k Tln( h ) amm = ll’l B tr
2\2mE, h
E,in=13 eV =4.30 nm

mm

(Limited by the mass of electron)

Adjustments: effective mass, electrostatics etc.: a,,,~5 nm, E_. ~2-3 eV



ﬁ® Electron-based Nonvolatile Memory (Flash)

1. Basic Concept

Insulator Insulator

Conductor

2. WRITE (F-N regime)

1

write

E,

@)

3. READ

‘/l;\(? :% /] eV, .. <2E, L
he-F{--O-|--4->H © . 5
s some : - <6V |View™2V
[ ' FET 3
§ : evwr/te>2Eb E — Tﬁ’e"
N e T >5nm >5nm
FET >6V S \ y }
FET
Ebmin >1.7 eV (>10 y retention) VWrite min~> 6-7 Volt (very SIOW) TOX>10nm
E,c0r,=3.1eV or 1
a . ~5nm V,ite >10-15 Volt (ms-us) ch F,.> 10nm
4. Array Ciin~ 1014 F

#y 128

L€

<\

P

E~C,

ine

or 2x10-1° J/bit

V:~2.5-10"J/line

94



ﬁ |
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MINIMAL COMPUTER

Nanoelectronics and
Information Technology

HWILEY-VCH

R. Cavin, W. Joyner, and T. Noll,
Chapter 22: Performance
Estimates for Microprocessors: at
Technology Limits and in Practice,
in: Nanoelectronics and
Information Technology,

by R. Waser (Ed.) (Wiley 2012)



ﬁ® Von Neumann’s Threshold

“If one constructs the automaton (A) correctly, then any additional
requirements about the automaton can be handled by sufficiently
elaborated instructions. This is only true if A is sufficiently complicated, if it
has reached a certain minimum of complexity” (J. von Neumann)

Capability for general-purpose
computing?:

C>1 Yes
C<1 No

‘Minimal’ Turing Machine

Von Neumann threshold ]
5



ﬁ® 1-bit ALU example — simple
Turing Machine model

Z

ALU Output Data

¢

Instructions

Input Data

The minimal ALU does 22=4 operations on two 1-bit X and Y:
Operation 1: X AND Y

Operation 2: XOR 'Y
Operation 3: (X+Y) Supports functionally complete set of
Operation 4 (X+(NOT Y)) logic and arithmetic operations

Y



:Memory

e —= ;\ : ~500 “raw” bit transitions
2-bit per useful bit

I, I, | Counter |24

. Program Counter ™\
S
1 98 6 , |1
1 6 S CPU
s, | Y ALU - >
C1 3
S, Cco
. Total: 320

S, —| devices




Bit

ﬁ® System Constraint on Minimum Energy per

[1 = (1 - Herr )N

Syst

0.5

I1 > 11

SySt cm‘

1

The probability that all N switches
In a circuit work correctly

lower boundary

1

N =1-TT" =1-2 32 =0.002

crit
Boltzmann

Heisenberg

E
IT  =lexp(——2)Hexp(-
or =/ EXP(= =) Hexp(-—

hE. +2akT.2mE
202m | () (-t 2T 2E,

hkT

1

min I l

err

E, =k, TIh— =6k,T

59




E® Charge based computing: A Summary

Energy/bit, J

1.00E-09
1.00E-10
1.00E-11
1.00E-12
1.00E-13
1.00E-14
1.00E-15
1.00E-16
1.00E-17
1.00E-18
1.00E-19
1.00E-20
1.00E-21

® Fundamental limit M Baseline technology

Wires connecting binary switches,

constitute a dominant) portion of the

energy consumption in ITC

Barrier
height

(Memory)

Memory Memory Barrier Logic Logic
device array height  device  circuit
(Logic)

1/0




A difficult problem for continuing scaling:
The Power/Heat Barrier

1,E+15

1970

1980

1990

2000 2010

Close to practical limits for

1,E+14

cost-effective cooling

1,E+13

Microprocessors

data

1,E+12

1,E+11

1,E+10

\®
L 4

1,E+09

u, IPS (Instructions per second)

1,E+08

Pres

1,E+07

1,E+06
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Energy consumption by ICT is growing

Heat removal is a crucial issue for future computing

New ICT principles for greater energy efficiency needs to be discovered



Benchmark capability u (IPS)
as a function of § (bit/s)

Estimates of computational
power of human brain:
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information processing
from Nature?

~500 “raw” bit transitions
per useful bit




A Thought System:
Ultimate Connectivity: Internet of Nanothings

loT Grand Challenges

I. Giga-Nano-Tera (Billions of Nanosystems
connected in a THz-network)

Il. Exa-DataCenters: Semiconductor

Technologies for Big Data

(Radically new energy-efficient technologies
for storing and analyzing massive volumes of
data)

Intel[i ent NanoNodes

Exa-DataCenter




World’s technological installed

Hilbert and Lopez, Science (2011) 332 pp. 60-65

capacity to store information

A Books Other paper and print

n m Newsprint TV movie film

a = X-Rays TV episodes film

Iz Vinyl LP = Cine movie film fiponty

© .. Photo negative = Audio cassette : % : 8%

9 = Photo print 2 Video analog = oy
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o8 Ana log World 2.2 %5, //////M
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LE+14

f Digital World

Informational Crust:
A major tectonic plate shift

LE+13 - p = ChipCard Floppy disks
i ~ Camera/camcorder intemal = Videogames others
g  Mobile phones & PDA m Memory Cards
i = Portable Media Player = Other hard-disks (portable)
t 2 CDs and MiniDiscs « Server & Mainframe hard-disk
a i Digital tape 2 DVD and Blu-Ray
I @ PC hard-disk
LE+12 T T T ( 3 1
1986 1993 2000 2007
—




Mbits
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Storage Needs in 2040

101%g of wafer-grade Si
N N Projected global supply:
~2x%10'® Mbit ~2x107 kg

]

2000 2010 2020 2030 2040 2050

Radical Departures from current baseline
technologies may be needed to address the
exponential growth in the storage needs
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By Richard M. Winegarner, Sage Concepts
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Example I: DNA Memory

Next-Generation Digital Information
Storage in DNA

George M. Church,’? Yuan Gao,® Sriram Kosuri'?*

s oud LG
1Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. 2W;.vss Institute for Biologically T 17 "
Inspired Engineering, Boston, MA 02115, USA. 3Department of Biomedical Engineering, Johns Hopkins
University, Baltimore, MD 21205, USA.

*To whom correspondence should be addressed. E-mail: sri.kosuri@wyss.harvard.edu

Researchers stored an entire genetics

textbook in less than a picogram of DNA —
one trillionth of a gram — an advance that
could revolutionize our ability to save data.

5.27%10° bit DNA memory can be stable ~ 100y+

HARDWARE: Agilent Oligo Library Synthesis microarray platform

= Agilent Technologies, a spin-off of Hewlett-Packard (1999), originally a semiconductor
company, which became now a global company offering products & services in
communications, electronics, semiconductor, test and measurement, life sciences and

chemical analysis industries.
e Example of a successful convergence of semiconductor and bio industrggs



Recent Disclosures of DNA Memory Capability Il
7 FEBRUARY 2013 | VOL 494

NATURE

Towards practical, high-capacity, low-maintenance
information storage in synthesized DNA

Nick Goldman', Paul Bertone', Siyuan Chen?, Christophe Dessimoz', Emily M. LeProust?, Botond Sipos' & Ewan Birney’
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All 154 of Shakespeare’s sonnets and audio
clip from Martin Luther King’s famous “l have
a dream" speech, were encoded in DNA by a
EMBL & Agilent team
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The team projects that, based on the current
progress in DNA read and write technologies,
this technique could be scaled up to store all
of the data in the world.
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ﬁ® Memory Only

Given: DNA memory usystem
Memory: 9.6 Mbit
Power: 108 W

Task time”™: 2400s=40min

Simplifying Assumption:

The entire DNA information content is
read and written at least once during
one cell division cycle

o . _ 2400
Characteristic access time per bit: { bit i 100 Us
2:9.6-10
~13177 .
Characteristic energy per bit (system-level): F <« 107" W - 2400s =25-107" i
2-9.6-10° bit
Characteristic energy per bit (system-level): 14- 10—13 W

P < =5.8-107"
oM 244107 GByte



DNA-Inspired Memory

(On-Going Project with Micron Technology)

DNA-inspired memory

= DNA volumetric memory density far exceeds (1000x) projected ultimate
electronic memory densities

= Potential for very low-energy memory access
= Goal: Demonstrate a miniaturized, on-chip integrated DNA storage

oAy

cA
ST Aa

| iy
iy ‘?qu
i

| |HardpiskDrive| NANDflash | DRAM

3-5 ms/bit ~100us/bit <10 ns/bit <100us/bit
unlimited 10%-10° unlimited unlimited
>10 years ~10 years 64 ms >10 years
~0.04 ~0.01-0.04 0.4 <10

~ 10! bit/cm? ~ 1019 bit/cm? ~ 10° bit/cm? n/a

Volumetric Densit n/a 1026 bit/cm3 ~10%3 bit/cm3 10%? bit/cm?3

70



ﬁ® Memory Hardware

= All data about structure and operation of a living cell are stored in the
long DNA molecule

Nonvolatile memory

=  DNA coding uses a base-4 (quaternary) system

nucleotides

Al

!
!

backbone

. .
, L
/ .
/ ,
/ ,
/ /
i /
/
’
i
!
'
'
1
'

0.34 nm / 2 bit

Electronic NVM:
Fin~10nm/1bit

W

N

1 Heavy mass!

The information is encoded digitally by using four different molecular fragments, to
represent a state: adenine (A), cytonine (C), guanine (G), and thymine (T).

a

" 2mE,

h

DNA is NOT a read-only memory

DNA memory operations
READ

- Multi-access capability by distinct computing
units

WRITE

Vertical gene transfer - exact copying of the
parental DNA

Lateral (horizontal) gene transfer :

(1) direct uptake (‘swallowing’) of a naked
DNA by a cell,

(2) by avirus,

(3) by direct physical contact between two
cells.




Si-uCell Bio-uCell - A Living Cell
About 500 of these cells would fit in

the cross-section of a human hair

Memory: 1000 more
Logic: >10x more

Power: 1000,000x less

Algorithmic efficiency: 1000x more



Storage Needs in 2040

Mbits

1,E+20 m
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1,E+15 >
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1,E+12
1980 1990 2000 2010 2020 2030 2040 2050

A bucket of DNA address the BigData
storage capacity challenge?

101%g of wafer-grade Si
Projected global supply:
~2x107 kg

1kg of DNA

Transmission
Challenge



To be completed in 2016:
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Conclusions E

+ ICT and Energy devices have a common soul
« The universal principle of operation of all these elements is
the creation and management of charge separation

« Controllable energy barriers is a fundamental component in
all ICT & Energy devices

¢ Memory and Communication are the main factors of
energy consumption by ICT rather than Logic

+ We suggest that inspiration for future ultra-low energy ICT
can be derived from organic systems, i.e., at the
intersection of chemistry, biology, and information
processing
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ﬁ® Short-term lessons

Memory access is the most severe limiting factor of Si-
uCell Computer.

= not enough nonvolatile memory bits

= Memory access to support computations takes too much energy

Organizing solid-state memory in cross-bar arrays,

while an elegant solution at larger scale, but it "
contributes to excessive energy dissipation due to line "
charging during R/W access.

= Access to the DNA memory is array-less and can be viewed as
similar to access to tape or hard disc drive.

= Multiple W/R heads for independent access

Desirable attributes for future memory ‘Millipede’

Cantilever array on CMOS chip

tech nology
Array-less organization for energy minimization
= Multiple R/W heads for independent access
= Moving atoms for ultimate density (~ 1nm memory elements)
= Example: the IBM 'Millipede’ MENS scamner




